Bagging null space locality preserving discriminant classifiers for face recognition

نویسندگان

  • Liping Yang
  • Weiguo Gong
  • Xiaohua Gu
  • Weihong Li
  • Yanfei Liu
چکیده

In this paper, we propose a novel bagging null space locality preserving discriminant analysis (bagNLPDA) method for facial feature extraction and recognition. The bagNLPDA method first projects all the training samples into the range space of a so-called locality preserving total scatter matrix without losing any discriminative information. The projected training samples are then randomly sampled using bagging to generate a set of bootstrap replicates. Null space discriminant analysis is performed in each replicate and the results of them are combined using majority voting. As a result, the proposed method aggregates a set of complementary null space locality preserving discriminant classifiers. Experiments on FERET and PIE subsets demonstrate the effectiveness of bagNLPDA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

A Locality Correlation Discriminant with Preserving Embedded Neighborhood for Face Recognition ⋆

This paper proposes a locality correlation discriminant with neighborhood preserving embedding for face recognition, which considers both the locality correlation and manifold structure of the training data. A new locality correlation preserving within-class scatter matrix is defined, which not only contains the locality preserving information but also contains the neighbor correlation informat...

متن کامل

Optimized Discriminant Locality Preserving Projection of Gabor Feature for Biometric Recognition

Discriminant locality preserving projection(DLPP) can not obtain optimal discriminant vectors which utmostly optimize the objective of DLPP. This paper proposed a Gabor based optimized discriminant locality preserving projections (ODLPP) algorithm which can directly optimize discriminant locality preserving criterion on high-dimensional Gabor feature space via simultaneous diagonalization, with...

متن کامل

Application of Locality Preserving Projections in Face Recognition

Face recognition technology has evolved as an enchanting solution to address the contemporary needs in order to perform identification and verification of identity claims. By advancing the feature extraction methods and dimensionality reduction techniques in the application of pattern recognition, a number of face recognition systems has been developed with distinct degrees of success. Locality...

متن کامل

Learning a Locality Preserving Subspace for Visual Recognition

Previous works have demonstrated that the face recognition performance can be improved significantly in low dimensional linear subspaces. Conventionally, principal component analysis (PCA) and linear discriminant analysis (LDA) are considered effective in deriving such a face subspace. However, both of them effectively see only the Euclidean structure of face space. In this paper, we propose a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2009